JOURNAL OF COMPUTATIONAL PHYSICS 4, 272-275 (1969)

On Stability of Numerical Methods
for Systems of Initial-Value Partial Differential Equations

In a previous paper [/], it was demonstrated that difference approximations to the
initial-value partial differential equation defined on R: {0 < # < T, — 00 < x < o0}
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must satisfy certain “invariant” quantities in order that the difference approxima-
tion be numerically stable as the time step approaches zero, 4t — 0, for a fixed
space step, 4dx.

The utility of these results is the “invariant” quantities yield a priori knowledge
on the type of difference schemes which should be used to approximate (1) as well
as an estimate for Az. If the “invariants” are satisfied and are nonzero except for
space frequencies k = 0, 2#/4x, 4w/dx,..., then a stable numerical process is
assured for sufficiently small Az Stability is defined in the sense of Von Neumann
[2] and is shown in [/] to depend predominately on the terms of index r > 1 in
equation (1).

Equation (1) may be put into matrix form, and if the ¢;, are constant coefficients,
the “invariant” properties hold under a linear, non-singular transformation of
coordinates. To demonstrate this property consider the second order system of
linear, constant coefficient, partial differential equations corresponding ton = 2 in
equation (1):
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The space derivatives o;; may be approximated by mesh displacements on
Rp: {0 <mdt <T,ndx = x} at either the (m -+ 1) At or m Az time steps
and the equation Fourier transformed with respect to the space axis to yield a
form to establish stability of the numerical scheme:

[vl(t + 4z, k)] _ [1 + Orog, At Oy, At ]—1
Uz(t _I“ At, k) 630421 At 1 + e4a22 At

% [1 + A1 + 0) oy AL+ 65) oy ][”1('3 k)] G)
Al + 05) ay 1 - A1 + 8pgpllovg(t, k)

272



SYSTEMS OF INITIAL-VALUE PARTIAL DIFFERENTIAL EQUATIONS 273

i is Fourier or dual variable and oy;0(f, k) corresponds to the transform of the
difference approximation to «ju(t, x) as developed in [Z]. The &; are real but other-
wise arbitrary.

The roots of the characteristic polynomial of (3} must satisfy the Von Neumann
stability condition [2]. When the characteristic polynomial of (3) is introduced into
the Schur-Cohn Criterion as done in [1], the “lowest power” 4t terms in the expan-
sion of the determinants are found to be independent of the arbitrary 8, . Thus the
“igvariants” are:
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where the higher order 4¢ terms are dependent on the 0, .

4, must be negative and 4, positive for all k in order that both roots of (3} lie
inside the unit circle. It is seen that this can be accomplished if 4r is sufficiently
small that the lowest power 4t term (the invariants) dominate 4, and 4, and the oy,
have the proper signs for all space frequencies & (e.g. o« = {e74% — 1)/4x for g
first derivative approximation).

The important point is that (2) has the same characteristic equation as:
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when o' = ay; -+ agy and o = a0, — ay;0, . Approximations to (6) have the
“invariants™ {/]:
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which are the same as (4) and (5) under the substitution. The higher order 47 termms
are in general not equal. In [7] it was shown that the invariant quantities also appear
when a multi-step method (more than three time steps) is used to approximate the
second order characteristic equation. Since the “invariants” are fundamental fo
difference approximations, it is possible to determine apriori if a stable formulation
can be found for an equation or system of equations by means of examining the
“invariants”. Such a classification is presented in Table I for the second order
equation, In this table, there are eighty categories which depend on combinations
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TABLE T CLASSIFICATION OF A_SECOND ORDER SYSTEM
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of the real and imaginary parts of «, and &, . These categories are divided into four
groups. These groups are:

1) F.N.F. which means that any difference expression to (5) or (12) that results
in the o and «, listed is a stable formulation when A¢ is sufficiently small that the
invariant quantities dominate the Schur-Cohn determinants.

2) T~ means that the invariants are not the proper sign so that the difference
equation is unstable for small 4¢ Usually one root will be inside the unit circle and
one root outside the unit circle.

3) (blank) means that combinations of 8, may be chosen such that a stable
formulation is found. The wave equation 0%/0#? = 0%u/0x* is represented by
category #9. Many of the implicit or explicit schemes used for this equation can be
considered cases of particular 8, for (3).

4y ////// means that equation (7) is greater than zero, and both roots of the charac-
teristic equation lie outside the unit circle. In this circumstance, it may be possible
to formulate the difference equation as a final-value problem and proceed to solve
the equation backwards in time. Laplace’s equation, &%u/0t2 = —0%u/0x?, is one
example which may be represented by category #54.
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Two constraints are noted in Table 1. The first is the real part of the coefficient
of the Fourier transform for o; must be definite. Thatis Reo;, >0 or Reo; <0
for all k in order the “invariants™ to be proper sign. Also for the same difference
apptoximation: Im «; = Sin(k 4x) f(k 4dx) where f(k 4x) is definite. It is possible
to generate a family of difference expressions for all orders of space derivatives
with this property.

The second constraint is on the magnitude of the coefficients and the order of the
derivatives. This is seen from equation (8) to be:
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for the cases where o’ is not zero, such that (8) is positive,

In principle, these results extend to higher order systems but the algebraic
difficulty increases. The third invariant for a third order equation contains nine
or 3% terms, such that the nth invariant for an nth order equation perhaps may
contain #*~} terms. Finding the types of higher order types of equations for which
a stable difference scheme can be formulated is correspondingly difficult.
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